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We consider the effects of a small-amplitude, steady, streamwise vorticity field on 
the flow over an infinitely thin flat plate in an otherwise uniform stream. We show 
how the initially linear perturbation, ultimately leads to a small-amplitude but 
nonlinear cross-flow far downstream from the leading edge. This motion is imposed 
on the boundary-layer flow and eventually causes the boundary layer to separate. 
The streamwise velocity profiles within the boundary layer become inflexional in 
localized spanwise regions just upstream of the separation point. The flow in these 
regions is therefore susceptible to rapidly growing inviscid instabilities. 

1. Introduction 
Experimentalists have obtained a great deal of information about laminar 

boundary layers by studying the flows over relatively thin flat plates embedded in 
nominally uniform free streans. Such experiments are attempts to simulate the flow 
over an infinitely thin flat plate embedded in a completely uniform stream and it is 
important to know how relatively small imperfections in the experimental 
environment can change the final measured results. 

Goldstein, Leib & Cowley (1992, hereinafter referred to as I), showed how small 
(but steady) spanwise variations in the incident streamwise velocity field can 
produce somewhat larger streamwise vorticity fields within the boundary layer 
which can, in turn, produce significant (i.e. order-one) variations in the streamwise 
velocity profiles. In  fact the alterations in the boundary-layer motion ultimately 
become large enough to separate the flow. Inviscid vortex stretching in the main 
stream causes the separation to develop relatively close to the leading edge and a 
fairly complete analytical description of the separation structure was then obtained. 
This separation, which is of the boundary-layer collision type (Stewartson, Cebeci & 
Chang 1980; Stewartson & Simpson 1982), occurs on a symmetry plane and the wall 
shear stress was shown to vanish a t  the separation point. However, the streamwise 
velocity profiles were completely non-inflexional. 

Here we consider the case where the upstream vorticity is entirely in the 
streamwise direction so that there is no vortex stretching resulting from the potential 
flow over the plate. The effects of plate thickness are then largely irrelevant and the 
pertinent physics are best elucidated by considering the flow over an infinitely thin 
flat plate. The resulting flow fields (both inside and outside the boundary layer) are 
now quite different from those in I. In fact the separation now occurs much further 
downstream than before and is moved off the symmetry plane by a moderately 
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strong secondary vortex induced by the external inviscid vorticity field. The present 
study is therefore complementary to that of I and the two taken together provide a 
more or less complete description of the phenomena that occur in slightly non- 
uniform flows over two-dimensional flat plates. 

As in I, we assume that 
R, @ (1.1) 

where R, is the Reynolds number based on the characteristic lengthscale h of the 
upstream disturbance field and e denotes the characteristic amplitude of that 
disturbance (relative to the undisturbed free-stream velocity field). The upstream 
distortion again interacts linearly with the leading edge with the resulting flow being 
well described by the usual ‘rapid distortion’ theory (Hunt & Carruthers 1990; 
Goldstein 1978). However, the absence of vortex stretching now precludes the 
important logarithmic singularity that dominates the near-wall flow in I. 

The inviscid cross-flow effects again produce only a linear perturbation of the 
boundary-layer flow in the vicinity of the leading edge, where the undisturbed 
boundary layer undergoes its most rapid streamwise development, but they produce 
an order-one change in the mean boundary layer profiles at large distances 
downstream where the boundary layer develops on a considerably longer scale. The 
linear rapid distortion theory solution again breaks down a t  large streamwise 
distances from the leading edge (even though the cross-flow velocities remain small) 
and a new nonlinear solution has to be obtained in order to describe the inviscid flow 
outside the boundary layer in the physically interesting region where cross-flow 
effects produce significant (i.e. order-one) profile changes in that layer. However, the 
nonlinear region now occurs somewhat further downstream and the resulting inviscid 
flow is described by the two-dimensional time-dependent inviscid vorticity equation 
(with the streamwise coordinate playing the role of the time) rather than by the 
inviscid Burgers’ equation that was obtained in I. The associated boundary-layer 
flow is therefore quite different from that found in I, with the streamwise velocity 
profiles now becoming inflexional before the boundary layer separates. The 
separation is again of the boundary-layer collision type but, as already indicated, is 
moved off the symmetry plane by a secondary streamwise vortex. 

The inflexional velocity profiles occur just upstream of the separation point and, 
as anticipated by Prandtl(l935) over fifty years ago, arise from the counter-rotating 
streamwise vortices in the boundary layer which result from the streamwise vorticity 
imposed on the flow. These profiles are, as Prandtl (1935) suggested (see also Hall & 
Horseman 1991), unstable to Rayleigh instabilities which grow on a streamwise 
lengthscale on the order of the boundary-layer thickness and can therefore dominate 
the much slower growing Tollmien-Schlichting waves, which are the only instability 
that would exist in the absence of streamwise vorticity. Our calculations show that 
the Rayleigh instabilities exhibit large growth and can therefore lead to a local 
transition of the boundary layer before it is able to separate. The resulting turbulent 
flow would probably resemble a turbulent spot which, in the real flow, is likely to 
move around on the surface because the imposed streamwise vorticity would not be 
very steady in any realistic experiment. This phenomenon might therefore resemble 
a kind of ‘bypass transition ’ that is sometimes observed in the laboratory. (The term 
‘bypass transition ’ is currently used to denote any transition process which 
circumvents the relatively slow process of Tollmien-Schlichting wave linear growth, 
non-linear interaction, three-dimensional development and so on to fully developed 
turbulence .) Of course the Tollmien-Schlichting waves can begin their growth well 
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upstream of where the streamwise profiles become inflexional and therefore lead to 
transition before the latter can occur. 

The present three-dimensional boundary-layer flow bears some resemblance to the 
Gortler vortex flows considered by Hall (1988). The primary difference is that the 
streamwise vortices reside in the outer inviscid flow in the present analysis and can 
therefore persist over long streamwise distances without the aid of surface curvature 
effects to counteract the streamwise decay that would otherwise occur. Gortler 
vortices reside within the boundary layer and exhibit streamwise growth as a result 
of the surface curvature effects. It might appear on the face of it that our analysis 
should reduce to that of Hall (1988) when surface curvature effects are included and 
the disturbance Reynolds number ER, is allowed to approach unity. However, Crow 
(1966) considered the O( 1 )  disturbance Reynolds number case with zero curvature 
and showed that the viscous effects are no longer confined to the boundary layer in 
this limit, as they are in the Hall (1988) analysis. The present small-disturbance 
Reynolds number scaling allows free-stream disturbances to become fully nonlinear 
before viscous effects can set in. This, in turn, has an important effect on the 
subsequent development of the flow and leads to an asymptotic solution that 
exhibits some interesting features of the motion which would otherwise be obscured 
by viscous phenomena. 

The present study also bears some resemblance to the receptivity analyses of 
Goldstein (1983, 1985), Goldstein, Sockol & Sanz (1983) and Goldstein, Leib & 
Cowley (1987) in that it involves the internalization of free-stream disturbances with 
an attendant streamwise amplification of the perturbed boundary-layer flow, but i t  
differs from them in that it only involves changes in the mean flow and does not 
depend on the growth of local instability waves to produce the final effect. More 
recent studies of Hall (1990) that consider the receptivity issue for Gortler vortices 
are more closely related to the present analysis. An important difference is that 
Hall’s (1990) input disturbance is imposed a t  the leading (upstream) edge of the 
boundary layer whereas (as in Goldstein 1983) the present analysis imposes the 
disturbance far upstream of the leading edge where the flow is uninfluenced by the 
plate. We believe that this type of input better characterizes the experimental 
configurations since it allows the disturbance to be specified independently of surface 
geometry effects. Indeed it is only by specifying the disturbance in this way that 
inviscid interaction effects with the solid surface, such as the vortex stretching 
considered in I, can be accounted for. The fundamental differences between the 
present results and those of I are ample testimony that such effects must be 
accounted for in order to properly predict the experimental results. The exact 
variation of the disturbance in the direction normal to the plate seems to  be 
relatively unimportant and should not effect the results qualitatively. (We note in 
this regard that Hall 1990 takes the imposed disturbance to be periodic in this 
direction while we ultimately allow it to decay exponentially.) 

The overall plan of the paper is as follows. In $ 2  the problem is formulated and the 
linear inviscid flow solutions produced by the steady upstream distortion field and its 
subsequent breakdown are discussed. The appropriate nonlinear inviscid solution 
that eliminates the breakdown is described in $3.  The viscous boundary-layer 
problem is formulated in $4. The numerical procedures for calculating both the 
nonlinear inviscid flow and the three-dimensional boundary-layer flow are discussed 
in $5. The numerical results, corresponding to a relatively simple choice of the 
upstream disturbance, are discussed in $6. 
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FIGURE 1. Problem geometry, 

2. Formulation and breakdown of the linear solution 
We are concerned with the flow over a semi-infinite flat plate due to a small, O ( E )  

streamwise vorticity field, with characteristic lengthscale A, imposed on an otherwise 
uniform upstream flow (see figure 1) .  We suppose that the flow is incompressible, that 
all lengths are normalized by A, that the velocity u = {u, v, w} has been normalized by 
the uniform upstream velocity U ,  and that the pressure has been normalized by 
pV,, where p is the (constant) density. We take the origin of the (x, y, z> coordinate 
system to be a t  the leading edge of the plate with x in the streamwise direction and 
y normal to the plate. 

It follows that 

where $, = $,(y, z )  is a cross-flow stream function that can be used to characterize 
the upstream disturbance. 

The effects of plate thickness are largely irrelevant and we suppose, for simplicity, 
that the plate is infinitely thin. Finally the Reynolds number R, = Urn A l v ,  where v is 
the kinematic viscosity, is assumed to be large enough so that viscous effects are 
initially confined to a thin boundary layer near the surface of the plate. 

2.1. The linear solution 
The non-uniform flow outside the boundary layer is governed by linear rapid 
distortion theory in the vicinity of the leading edge, i.e. where x = O(1). The 
boundary-layer flow below this region is nearly two-dimensional with three- 
dimensional effects being only an O(e) perturbation of this otherwise Blasius flow. 
The inviscid solution should therefore expand like 

u = ( 1,0,0} +€{U,,, ?Jo, wo) + E 2 { U l ,  ul, WJ + . . . 

p = €po+"pl+ ... . 
= { 1,0, O} + €U0 + €2U1 + . . . , (2.2) 

(2.3) 
The zeroth-order terms are governed by the linearized Euler equations and the 

results given in Goldstein (1978) can be used to write this as 

where can be determined from 
VZ@ = 0, 
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subject to the boundary conditions 

x<0; y = 0)X > 0, (2.7) 

with; and L being the unit vectors in the y- and z-directions, respectively. 

2.2. Breakdown of the linear solution 
The linear inviscid problem (2.6) and (2.7) can be solved by the Wiener-Hopf 
technique (Nobel 1958). We note in passing that the relevant solution has a ‘square 
root ’ singularity a t  the leading edge of the plate but this has no effect on our analysis 
-provided, of course, that massive separation does not occur. This is because the 
boundary layer would, at most, be locally three-dimensional in the vicinity of the 
leading edge and would return to a predominantly two-dimensional Blasius flow well 
upstream of the nonlinear region that is of primary interest herein. Of course, all real 
flat plates have blunt leading edges which preclude the occurrence of a singularity in 
any real flow. We can then, if necessary, suppose that the leading-edge radius is large 
enough to prevent the occurrence of separation, but still small enough to  be 
consistent with the infinitely thin flat plate model in so far as it effects the 
downstream flow. The results show that # becomes independent of x as x+00 and, 
in view of (2.4) and (2.5), that 

uo,poo+O as x+m. ( 2 . 8 )  

It follows that the downstream motion, like the upstream flow, is basically two- 
dimensional and can therefore be determined from a single cross-flow stream function 

zlro = zlrO(Y,& (2.9) 

such that (2.10) 

However, this solution is non-uniformly valid as x+00. To show this we note that 
the first-order solution satisfies 

3% -+vp - 
ax l -  

- u, - vu, 

(2.11) 

and v.u ,  = 0. (2.12) 

It follows that 

and therefore that p1 can only vanish at y = 00 if it becomes independent of z 
as x +a, i.e. 

P,-tP,(Y,Z) as x + a .  (2.14) 

Equation (2.11) now shows that 

(2.15) 
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and (2.16) 

as z-too, which implies that  the zeroth- and first-order solutions become of the same 

(2.17) order when z E EX = O(1). 

3. Nonlinear inviscid solution 
To obt.ain the solution in this region we introduce t,he scaled streamwise variable 

(2.17) into the Navier-Stokes equations and, in view of (2.2) and (2.8), seek solutions 
of the form 

21 = 1 + € 2 G 0 +  ..., 
'u = €GO+ ..., (3.2) 
w = €GO+ ..., (3.3) 
p = E 2 f i 0 +  ... . (3.4) 

T t  follows from ( 1 . 1 )  that the viscous terms, which are now O(c/R,) ,  are still 
negligible compared to the inviscid terms, which are O(e2) ,  and therefore that 

(3.5) 

Equation (3.8) shows that we can again introduce a cross-flow stream function, say 
$ o ( ~ ,  y, z ) ,  such that 

(3.9) 
- a30 

o ax 

a Y  

2, =- 

and WO - = --- a$o (3.10) 

Inserting this in (3.6) and (3.7),  and eliminating the pressure in the usual way, we 

where 

(3.11) 

(3.12) 

(3.13) 

is the transverse Laplacian. This equation is just the two-dimensional time- 
dependent vorticity equation with the scaled streamwise coordinate % playing the 
role of the time. Equations ( 2 . 2 ) ,  ( 2 . 8 ) ,  (3.2), (3.3), (3.9) and (3.10) show that its 
solutions will match with the linear solution of the previous section if we require that 

Go = $,(y,x) at x: = 0, (3.14) 



Three-dimensional boundary-layer instability and separation 27 

and the normal velocity will vanish a t  the plate if we require that 

% = o  at  y = o  for z>o .  (3.15) 

uniquely 

a2 

These conditions, along with the requirement that &,, + 0 as 
determine the solution to (3.12). 

4. The viscous boundary layer 

This occurs when 
Viscous effects must, of course, come into play when y becomes sufficiently small. 

g = y/s = O(l ) ,  (4.1) 

where s = (L/h)R-t (4.2) 

and R = U ,  Llv ,  (4.3) 

are the boundary-layer thickness and Reynolds number, respectively, based on the 
long streamwise lengthscale 

L = A/€  (4.4) 

associated with the nonlinear inviscid region. 
The streamwise velocity 

u = U ( z , g , z ) +  ..., (4.5) 

must be of order one and the requirements of continuity suggest that the scaled 
cross-flow velocities V and W will be order one if we put 

v = dV(z,g,z)+ ..., 
w = €W(X, y, 2 )  + . . . . 

Equation (3.4) implies that the pressure will scale like 

p = € T ( Z , Z ) +  ..., (4.8) 

where P is, of course, of order one. 

dimensional boundary-layer equations 
Substituting these into the full Navier-Stokes equations we obtain the three- 

au au au a w  
ax ag aZ a?’ u-+v-+ w- = - 

aw aw aw ap a2w 

az ag aZ az ap 
U-+~-+W-=---+- 

au av aw 
az ag a2 
-+-+- = 0. 

The zero-slip condition implies that  

U = V = W = O  at g=O, 

and in order to match with (3.1)-(3.4) we must require that 

U-21,  W+tZ,,(z,O,z) as fj+oo, 

and P = fqz, 0,z ) .  

2 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

FLM 246 
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Then, since the cross-flow effects become small as E+O,  U must go to the Blasius 
solution in this limit, i.e. 

U+U,(Z ,~~)  as X + 0 .  (4.15) 

5. Numerical methods 

inviscid and viscous problems obtained in 993 and 4, respectively. 
I n  this section we describe the numerical methods used to solve the nonlinear 

5.1. The nonlinear inviscid $ow 
The nonlinear inviscid flow must be determined by numerically solving (3.12)-(3.16). 
To this end we write (3.12) in the 'vorticity-stream function' form as 

ad, ~ ad, ad 
- + v , - + G o ~  = 0, az ay a2 

with v&Fo = do. (5.2) 

The calculations are carried out for a disturbance that is periodic in the spanwise 
direction, so it is appropriate to introduce the Fourier expansion 

with 

where * represents the complex conjugate, etc. into (5.1) and (5.2) to obtain 

and 

(5.3) 

(5.4) 

The numerical solution to this problem is obtained by marching in x from the 
initial condition (3.14) by the following procedure. The ' time-dependent ' vorticity 
equation (5.5) is advanced in z by the midpoint leap-frog method which is marginally 
stable, non-dissipative and treats the nonlinear terms explicitly. The latter can 
therefore be efficiently calculated by inverse transforming to physical space, forming 
the products and then transforming back to Fourier space using a standard fast 
Fourier transform routine. In  addition, only modes with n 0 need to be calculated; 
the remaining modes are obtained by using (5.4). The updated vorticity is then used 
in the stream-function equation, where a second-order central difference ap- 
proximation yields a tridiagonal system of equations for each Fourier component. 
The boundary condition (3.14) and (3.15) are imposed at  the step. The velocity 
components are then evaluated from (3.9) and (3.10). One-sided differences are used 
to evaluate y-derivatives a t  the wall. The marching procedure is started by Heun's 
two-step method (Roache 1976, p. 88) which has the same order truncation error as 
the leap-frog method. 

5.2. Three-dimensional boundary-layer flow 
Numerical solutions to the three-dimensional boundary-layer problem (4.9)-(4.15) 
were obtained using a finite-difference scheme similar to the Keller box method used 
in I but with several important modifications to be discussed below. 
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To facilitate the numerical calculations, the problem is expressed in terms of the 
Blasius variable 

as a system of five first-order equations 

u = p ,  
w = q, 

au aw 
e’ = ~ U + E  [a, -+- a,] , 

(5.10) 
(5.11) 

(5.12) 

where ’ = a/aq. The boundary conditions are given by (4.12)-(4.14) and 

(5.13) 
The initial condition a t  z = 0 is the Blasius solution. 

Second-order finite-difference approximations are introduced in (5.8)-(5.12) in the 
same way as in I (see also Cebeci, Khattab & Stewartson 1981) except that the 
spanwise convection terms, i.e. WaU/az and WaW/az, are replaced with a second- 
order upwind approximation (see, for example, Johnston 1990) in order to deal with 
the local regions of reverse cross-flow that occur in the boundary layer for this 
problem. The procedure advances the solution in the streamwise and spanwise 
directions from the initial condition a t  , = 0 and an independent symmetry-plane 
solution, respectively. The symmetry planes, on which W = 0, are located a t  z = 0, 
z, 2n: for our chosen upstream disturbance (see (6.1) below). Where possible we march 
from one symmetry plane to another in the direction of positive external spanwise 
velocity (from z = 7~ to 27~ in our particular case). The first and last spanwise steps 
require special treatment. Since > 0 along the initial symmetry plane (at 
z = 7c) the standard Keller box differencing can be used to start the spanwise 
marching. The upwind differencing is maintained at the last step (one grid point 
before the second symmetry plane) as long as W > 0 there, otherwise a central 
difference is used. Data on the second symmetry plane are available as a ‘boundary 
condition’ when needed. 

Introduction of the finite-difference approximations yields a nonlinear system of 
algebraic equations for the unknown variables at the next (streamwise or spanwise) 
grid point. The latter are linearized by Newton’s method and the resulting linear 
equations are solved with a block tri-diagonal algorithm. Each iteration consist of a 
single sweep across the span (from z = 7c to 27~) at a new streamwise station and the 
solution is iterated to convergence for all z before proceeding downstream. Only a 
half-period of the flow needs to be calculated, the remainder can be obtained from 
symmetry. 

e(Z, 7 = 0, z )  = 0. 

6. Results and discussion 
Our analysis shows how an initial streamwise vorticity distribution, imposed 

upstream of the leading edge, is converted, by linear processes, to a downstream 
vorticity distribution characterized by a cross-flow stream function @o which in turn 

2-2 
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FIQURE 2. Streamline pattern in the cross-flow plane of the imposed 
steady upstream disturbance field. 

provides the upstream boundary condition for the nonlinear inviscid problem 
discussed in the previous section. 

For numerical purposes we have chosen the stream function of the imposed 
upstream flow to be 

I t  was selected because it is one of the simplest spanwise-periodic functions that 
exhibits exponential decay away from the plane of the plate. It represents an infinite 
array of counter-rotating streamwise vortices centred at  the surface of the plate. The 
corresponding streamline pattern is shown in figure 2. 

The downstream stream function $,,, which is easily obtained (2.6)-(2.7) by a 
linear Wiener-Hopf calculation (Noble 1958), is given 

@a(y,z) = sinzsechy. (6.1) 

00 

$,,(y, z )  = {&(y) - &k(g = 0) e+Iy} eifiz, (6.2) 
?&--a3 

where $$ are the coefficients of the Fourier series expansion for $a. This was 
combined with the numerical procedure of $5.1 to calculate the nonlinear inviscid 
cross-flow streamline patterns shown in figure 3. These results show that the 
nonlinear inviscid flow above the plate consists of counter-rotating pairs of 
streamwise vortices. The counter-rotating vortex pairs move together by self- 
induction while they are close to the plane of the plate, causing the upwash velocity 
between the paired vortices to increase. However, this effect is eventually reversed 
as the paired vortices move away from the surface of the plate under the influence 
of their mutual induction fields. Unlike the nonlinear inviscid flow in I, where the 
upwash velocity becomes infinite at  a finite downstream position, the upwash 
velocity remains bounded throughout the nonlinear region. This is due t o  the 
additional nonlinear and pressure gradient terms in the inviscid equations, 
particularly those in the spanwise momentum equation (3.7), which limit the growth 
of the upwash velocity. 

While the qualitative behaviour of the inviscid flow field is relatively un- 
remarkable, the viscous flow in the three-dimensional boundary layer beneath this 
inviscid region is much more interesting. The three-dimensional effects are driven by 
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FIGURE 3. Evolution of the nonlinear, inviscid streamline pattern in th? cross-flow plane. 
(a)  2 = 0, ( b )  = 2, (c) Z = 4, ( d )  2 = 6, ( e )  I = 8. Numbers indicate $o levels plotted. 
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FIQURE 4. Inviscid cross-flow velocity at the surface of the plate. 

the inviscid spanwise velocity and the pressure gradient at the plate surface. The 
former is plotted in figure 4. Notice that the maximum slope of the cross-flow 
velocity, which occurs at x = 2z, initially increases but is eventually reduced, along 
with the maximum amplitude of the cross-flow velocity, as the vortices move away 
from the plate when the scaled streamwise coordinate Z exceeds about 2. This should 
be contrasted with the spanwise surface velocities in I where the spanwise gradient 
becomes infinite at a finite streamwise position and thereby drives the wall shear 
stress to zero in the induced boundary-layer flow. 

Figure 5 shows the boundary-layer streamwise velocity contours in the cross-flow 
plane a t  the indicated streamwise positions. They show that the boundary layer 
undergoes a severe thickening around z = 5.37 and suggest that  the solution begins 
to break down just downstream of Z = 0.935. These results are best understood by 
looking at  the velocity vectors in the cross-flow plane shown in figure 6. This flow 
corresponds to the ‘footprint ’ on the boundary layer of the large streamwise vortices 
that reside a t  an order-one distance from the wall. The figure shows that the rapid 
thickening of the boundary layer is due to a strong (nearly) vertical jet that is fed by 
the main vortex and a secondary vortex, having the opposite sense of rotation, that 
forms near the symmetry plane a t  z = 271. (and z = 0) for E beyond about 0.4. The 
secondary vortex core moves away from the wall and towards the opposite symmetry 
plane (at z = K) with increasing downstream distance. The flow is not dissimilar to 
the two-dimensional time-dependent boundary-layer flow due to a pair of counter- 
rotating vortices above a plane wall calculated by Ersoy & Walker (1985, 1986). 
There also the production of secondary vortices precedes the boundary-layer 
breakdown with the latter occurring off the plane of symmetry. We note that this is 
contrary to the view that the motion induced by the vortices leads to symmetry-line 
boundary-layer collisions (Stuart 1988). It is worth noting that no secondary vortex 
is generated in the boundary-layer flow in I and the corresponding vertical jet 
therefore forms on the symmetry plane. 

The jet increases in strength and decreases in width with increasing downstream 
distance and the spanwise velocity eventually becomes discontinuous across the jet 
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FIGURE 5 .  Boundary layer streamwise velocity contours in the cross-flow plane at (a) E = 0.4, 
(b )  = 0.6, (c) E = 0.8, (d) Z = 0.935. 

while the vertical velocity becomes infinite there. This, in particular, causes the so- 
called ' blowing velocity ' 

to also become infinite which is often taken as a separation criterion for three- 
dimensional boundary-layer flows. The spanwise blowing velocity distributions are 
plotted in figure 7 .  (Only half a period is shown here.) Extrapolation of our computed 
results indicates that the separation point occurs at Z w 0.955, z M 5.37. 

Figure 8 is a plot of the streamwise and spanwise wall shear stress components as 
a function of z for various values of Z. The streamwise component (figure 8 a )  develops 
a very sharp minimum near the vertical jet position z = 5.37. The spanwise 
component (figure 8 b )  clearly shows the cross-flow reversal associated with the 
secondary vortex beginning near the z = 2n symmetry plane at  about z = 0.4. The 
reverse cross-flow region then spreads out in the spanwise direction until it occupies 
more than one quarter of the spanwise domain just before the boundary layer 
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FIGURE 6. Scaled velocity vectors in the cross-flow plane at  (a)  Z = 0.4, ( b )  Z = 0.6, 
(c) Z = 0.8, (d) Z = 0.935. 
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FIGURE 9. Development of (a )  streamwise velocity profiles and ( b )  the corresponding second 
derivatives at  z = 5.37 as the separation point is approached. 

separates. Notice that, near the wall, the magnitudes of the maximum and minimum 
cross-flow velocities are almost equal by z = 0.935. 

Figure 6 suggests that the vertical jet is associated with the transport of low- 
momentum fluid away from the wall by the cross-flow vortices. Prandtl (1935) 
predicted that this redistribution of low-momentum fluid would have a significant 
effect on the streamwise velocity profiles - eventually causing them to become 
inflexional. Figure 9 (a) shows the streamwise velocity profiles (zcs. the Blasius 
variable 7) at z = 5.37 for a number of streamwise positions up to the separation 
point. The results confirm that the profiles do indeed become inflexional, beyond 
about Z = 0.6. The inflexion points are more easily seen in figure 9 (b) where the 
second derivatives of the corresponding profiles are shown. Note the existence of two 
inflexion points at  X = 0.95. 

As Prandtl (1935) pointed out, this provides a possible mechanism for transition 
to turbulence since the inflexional profiles are quite unstable to inviscid Rayleigh 
instabilities whose wavelengths are of the order of the boundary-layer thickness and 
therefore short compared with the characteristic spanwise lengthscale (i.e. 6 4 1) so 
that the underlying mean flow is basically two-dimensional. Their growth rates will 
then be on the order of the reciprocal boundary-layer thickness and can therefore be 
much larger than those of the Tollmien-Schlichting waves, which are the primary 
instability of the undisturbed Blasius flow. We calculated the local spatial growth 
rates of the Rayleigh instabilities for the velocity profiles shown in figure 9. The 
results are shown in figure 10. "The frequencies and growth rates are normalized by 
the boundary-layer thickness 6 corresponding to the position where the streamwise 
velocity is equal to  88 % of its free-stream value. This is done t o  facilitate comparison 
with the corresponding growth rates on a tanh shear layer, which is probably the most 
unstable of the generic model shear flows. Since the maximum spatial growth rate of 
the latter is equal to about 0.23 (Michalke 1965) the present flow must be regarded 
as highly unstable. Notice that the growth rates increase, while the unstable 
frequency band broadens and the peak growth rate shifts to higher frequency as the 
separation point is approached. This is primarily due to the movement of the 
inflexion point out from the wall as shown in figure 9b. 

The regions of inviscidly unstable velocity profiles are highly localized in the 
spanwise direction. The rapidly growing instability waves could therefore lead t o  
localized regions of turbulence perhaps taking the form of turbulent spots. The 
growth rates of the truly three dimensional instabilities associated with the spanwise 
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FIGURE 11. Streamwise velocity contours downstream of the initial separation point at  (a)  = 1.0 
and ( b )  1 = 2.0. The levels plotted are the same as in figure 5 .  The dashed vertical line in (a) denotes 
the termination point of the numerical solution from the z = x side. 

flow variation scale with the inverse of the spanwise length scale h and are therefore 
asymptotically smaller than the Rayleigh growth rates (which, as already noted, 
scale with (hd)-l)). 

The numerical boundary-layer solution can be continued beyond the streamwise 
location, z = 0.955, of the initial separation point provided the spanwise marching its 
terminated before we reach the location where the numerical solution breaks down. 
The terminal points trace out a curve, say z , (X) ,  in the (3, 2)-plane that represents a 
boundary across which the numerical solution cannot be continued and may 
therefore correspond to a separation line. The flow on the other side of this line 
cannot, of course, be obtained by marching from the z = n symmetry plane but must 
be computed by marching (against the free-stream flow) from the z = 2.n symmetry 
plane. The modifications to  the numerical procedure needed to proceed are described 
in the Appendix. Unfortunately, this procedure, which is a development of the one 
introduced by Cebeci et al. (1981), is unable to calculate the complete flow field in the 
region z, < z < 2n. 

Figures 11 and 12 show the streamwise velocity contours and the cross-flow velocity 
vectors, respectively, at Z = 1.0 and 2.0. Figures 11 ( a )  and 12 (a)  were constructed by 
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FIGURE 13. Limiting streamlines obtained from the boundary-layer calculation. @ indicates 
position of blowing velocity singularity. 

combining the Z = 1.0 solution initiated from the z = .n symmetry plane with the one 
initiated from the z = 2x symmetry plane. The dashed line in figure 11 (a) marks the 
termination point of the marching from z = x. We only show the solution for 
n < z < z, in parts ( b )  of these figures because solutions between z = z ,  and z = 2x 
could not be obtained at  Z = 2.0. The results show that the cross-flow patterns 
downstream of the initial separation point remain very similar to the upstream 
patterns - the primary difference being a shift towards z = 2x of the spanwise 
location of the termination point. 

Figure 13 shows the surface (or limiting) streamlines, which are solutions of 

dZ/dt = r ,  dzldt = CT, (6.4) 

where 7 and CT are, respectively, the numerically computed streamwise and spanwise 
components of the wall shear stress. Lighthill (1963, p. 74) argued that the running 
together of neighbouring surface streamlines is a sufficient condition for three- 
dimensional boundary-layer separation. Figure 13 shows that the calculated surface 
streamlines merge at the extrapolated position of the blowing velocity singularity 
( z  = 5.37, Z = 0.955) which is marked by 0 on the figure. This point may correspond 
to an isolated singular point (perhaps a saddle point) of the type proposed by 
Lighthill (1963) (see also the discussion in Cebeci et al. 1981). 
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The streamlines originating from the z = 7t side of the initial singularity coalesce 
along a curve in the (~,z)-plane which we identify with a separation line. The 
numerical procedure had to  be modified in order to calculate this curve due to its 
drift towards z = 2.n with increasing z (see Appendix). The flow in this region is 
similar to  that on the windward side of the flow of Cebeci et al. (1981) and we 
therefore expect that the wall shear stress distribution will be more or less consistent 
with the generalized Goldstein singularity postulated by Brown (1965). Of course the 
whole flow structure could change radically if a classical separation actually 
occurred. However, we can always suppose that the plate is short enough so that the 
separation lies off its end. Moreover, the highly unstable velocity profiles will almost 
certainly lead to boundary-layer transition upstream of the separation point, even 
when this is not the case. 

As already indicated, we were unable to obtain as complete a picture of the other 
side of z = z , ( ~ ) .  In  fact the condition of Raetz (1957) on the zone of dependence 
makes z = zS(x)  inaccessible to our numerical scheme (Cebeci et al. 1981) from z = 2 ~ .  
Figure 13 shows that the streamlines on the z = 2~ side of the initial singularity show 
no sign of turning to  merge with z = z,(z) but rather appear to collide with this curve, 
which then represents the only separation curve for the flow. The increasing difficulty 
in obtaining solutions on the x = 2.n side (even on the symmetry plane) suggests that 
the separation curve will eventually run into the z = 2.n symmetry plane but the 
shape of this curve suggests that this will only occur very far downstream. 

Several years ago Rozhko & Ruban (1987) proposed a scheme for weakly three- 
dimensional vortex-like flows which corresponds to the special scaling e = R-:. Their 
approach involves a local three-dimensional interactive boundary-layer solution 
which, in the limit of zero curvature, is a limiting form of the conventional triple- 
deck structure. It is induced by a three-dimensional scaled surface non-uniformity 
and produces a faster streamwise response than the present approach. In  the present 
problem the three-dimensional boundary-layer flow is induced by three-dimensional 
effects in the free stream, which are constrained by the imposed upstream flow to be 
O(e). The free-stream velocity field in the Rozhko & Ruban (1987) analysis is much 
larger, O(R&), and therefore cannot match onto the free-stream flow in the present 
analysis, which ultimately means that it cannot match with the imposed upstream 
conditions. In other words, the free-stream disturbances in the present analysis are 
unable to provoke a strong enough response within the boundary layer to produce 
the Rozhko & Ruban (1987) scaling. However, the larger free-stream velocities might 
be acceptable in some local region if they were forced by an internal mechanism 
within the boundary layer such as a global self-induced boundary-layer separation. 
The breakdown of the three-dimensional boundary-layer solution in the present 
analysis suggests that such a separation could occur if the plate were sufficiently long 
and transition did not occur upstream-which is unlikely to be the case in the 
present flow. In  any event, the Rozhko & Ruban (1987) solution would then 
correspond to a local solution that was somehow embedded in a global solution of the 
type considered herein. 

7. Concluding remarks 
It has long been known that streamwise vortices are a pervasive feature of 

transitioning boundary-layer flows. Their importance was first realized by Prandtl 
(1935) and it has recently been suggested (for example, by Blackwelder 1983) that 
they may be a universal feature of both turbulent and transitional boundary layers. 
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They may even be responsible for producing the violent local events such as 
turbulent spots in the transitional case and bursts in the turbulent case. 

Benney & Lin (1960) and Benney (1964) pointed out that steady streamwise 
vortices can result from the nonlinear interaction between spatially growing 
Tollmien-Schlichting waves. Here, we suggest that small-amplitude distortions of 
the upstream flow may provide another source of steady streamwise vortices within 
the flat-plate boundary layer. These vortices may allow the boundary layer to 
‘bypass ’ the linear Tollmien-Schlichting wave stage of transition and proceed 
directly to the much more rapidly growing inviscid instabilities associated with 
regions of nonlinear streamwise vortices. Since the unstable regions are highly 
localized in the spanwise direction, the initial region of turbulence would also be 
localized and might closely resemble the turbulent spots observed in some transition 
experiments. 

Our results show that the upstream distortion will ultimately cause the boundary 
layer to separate if transition does not occur first. 

The authors would like t o  thank Professor M. T. Landahl for reminding them of 
the leading-edge singularity in the linear inviscid solution of $2. 

Appendix 
This appendix describes the modifications that were made to the numerical 

procedure of $5.2 in order to advance the boundary-layer solution downstream of the 
initial separation point. It is essential that the proper zone of dependence be 
maintained in constructing the numerical schemes. 

A. 1.  Termination of the boundary-layer solution in the spanwise direction 
The finite differencing for the spanwise derivatives must be modified at  the last two 
spanwise points when the boundary-layer solution is terminated before reaching a 
symmetry plane. We use upwind differencing whenever the sign of the local cross- 
flow velocity allows. Otherwise, a central difference is used for the penultimate grid 
point and the so-called zigzag scheme described by Cebeci et al. (1981) is used for the 
last point. 

The shape of the separation curve is such that it is sometimes necessary to  take one 
more spanwise step at a given streamwise station beyond what was taken at the 
previous streamwise position. We briefly describe the method devised to do this. The 
differential equations are centred as in the standard Keller box method (Cebeci et al. 
1981) but values at the centre of the box are obtained as averages of the last spanwise 
grid points at the two streamwise stations. Upwind differencing is used for the 
spanwise derivatives and central differences are used for the cross-stream and 
streamwise derivatives (linear extrapolation at the previous streamwise station is 
also needed for the latter). In  practice this scheme was used when it was thought that 
the separation curve cut through the bottom face of the lower-most finite-difference 
box, leaving one corner inside the separated region. 

A.2. Marching against the external cross-$ow velocity direction 
The flow in the region Z > 0.955, z,(Z) < z < 2n: must be calculated by marching from 
the symmetry plane a t  x = 2n towards 2,. This requires a numerical procedure that 
is capable of marching against the external cross-flow direction. We tested the ability 
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of our upwind scheme to march in this direction by re-computing the solution in the 
region upstream of the initial separation point from the symmetry plane a t  z = 2n and 
marching to the one a t  z = K. It was found that the solution obtained in this way was, 
to  within the tolerance imposed, identical to that obtained by marching from the 
z = n symmetry plane when the same numerical parameters (step sizes, etc.) were 
used. We therefore used the same upwind to march from z = 2n towards z s (E) ,  
modifying only the end points. At the first spanwise grid point (from the z = 2rc 
symmetry plane) upwind or central differences were used for the spanwise 
derivatives, depending on the sign of the local spanwise velocity. When this spanwise 
marching is terminated, at say z = z,, information is always required from z < zt. At 
this point we used the zigzag differencing mentioned above. We used a central 
difference a t  the penultimate spanwise grid point where there are not enough points 
to do the upwind differencing if W > 0. As before, the upwind difference is used 
whenever possible. Upon convergence of the solution in zt < z < 2z data a t  z,-Az 
were generated by linear extrapolation for use by the zigzag scheme at the next 
streamwise station (Cebeci & Su 1988). 
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